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Numerous recent national and international aid interventions have focussed on the intensification of rice 
production in the Senegal River Valley (SRV) [1,2], which has had a major impact on land cover changes in the 
region. This study focuses on overcoming the limitations of the coarse spatial resolution of the Gravity 
Recovery and Climate Experiment (GRACE), set at 1° (~111km), which provides little spatial variation and limits 
the study of the local dynamics driving changes in Terrestrial Water Storage (TWS) across the SRV. 

To overcome the limitations of the relatively low spatial resolution of the GRACE observations, the data has 
been downscaled from 1-degree resolution to 0.25-degree resolution using a machine learning (ML) 
pixel-based XGBoost regression model. The increase in resolution is visually demonstrated in Figure 1. 

The data was preprocessed and extracted using the Google Earth Engine Python API, which leverages Google’s 
cloud processing and open-access data to reduce the computational cost. The model is trained on GLDAS-2.2 
climate variables, MODIS NDVI, MNDWI and GPM precipitation, resampled to the spatiotemporal resolution of 
GRACE data. 

The current iteration of the model has a satisfactory R² score of 0.91 following 10-fold shuffled split 
cross-validation. The scatter plot in Figure 2. depicts the prediction accuracy of the model on the training set.

Upsampling GRACE to 0.25° Resolution 

Fig 2. Predicted Vs. Measured scatter plot

Trends in TWS and Correlation 
with Input Features

Fig 1. Sample of the output resolution pixels clipped to 
Senegal compared with the nominal scale of GRACE 
pixels

Fig 3.  Area of interest highlighted in the red square in 
Figure 1, the Senegal River Valley outlined in black, 
overlayed the scale and projection of 0.25 degree pixels in 
white, labeled with Grid IDs
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To analyse underlying trends in the output of the 
ML model, seasonal decomposition was applied to 
the time series of 6 pixels that intersect with the 
region of interest depicted in Figure 3, an example 
of the output is depicted in Figure 4. Overall the 
selected pixels in the region see a significant 
positive trend in TWS, which can be observed in the 
trend time-series in Figure 5. An estimated overall 
increase of 2.24-4.34 cm is observed over the entire 
study period (January 2004 - 2020) for our region of 
interest.

Climate shock events can also be observed in the 
underlying trends, such as high precipitation (2010) 
and droughts (2011, 2014). This indicates that the 
groundwater availability in the region is particularly 
vulnerable to such impulsive events, as 
groundwater storage (GWS) has a very strong 
correlation (0.982-0.991 R²) with TWS locally and 
makes up the majority of available water resources 
in the arid climate of Senegal. This resource 
insecurity will be exacerbated by ongoing climate 
change, which will drive higher groundwater 
abstraction demand, higher evapotranspiration 
demand, seawater intrusion and more erratic 
precipitation patterns. 

From a correlation study of the output of the model 
against the input variables, depicted in Figure 6., we 
examined some of the primary drivers of TWS 
fluctuations in the SRV. We chose to include NDVI in 
our model as a proxy for vegetation, which plays an 
important role in the hydrological cycle at a local 
scale. As a result, we saw a marginal improvement 
in the overall model accuracy, while also observing 
some interesting insights into the relationship 
between vegetation and TWS anomalies.

In the sparsely vegetated regions where NDVI 
represents the natural flora that is supported by 
seasonal rainfall, we observe a high correlation 
between NDVI and TWS. However, in regions where 
agriculture is heavily supported by irrigation from 
groundwater, this relationship weakens and 
predicting TWS using the GLDAS 2.2 climate model 
is much less reliable. This can be attributed to the 
complex contribution of irrigation practices to the 
natural hydrological cycle and provides motivation 
for closer study of the impact of intensive irrigated 
agriculture on TWS at a regional scale. 

Fig 4. Seasonal decomposition results for pixel ID (-66,64) 
including trend, seasonal component and residuals.

Fig 5. Trend result for all Delta Pixels from seasonal 
decomposition to demonstrate positive trend in study period 

Fig 6. Grouped bar chart of the Pearson’s correlation results when 
comparing the output of the model to input features for individual 
Delta Pixels.


